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Introduction: Electroencephalogram (EEG) signals contain correlates for mental workload 

activities (Berka et al., 2007). Mental workload level predictions using spectral features of 

individual frequency bands in the EEG signal have yielded high accuracy in MATB-II tasks. 

(Comstock and Arnegard, 1992; Smith et al., 2001; Chandra et al., 2015; Salaken et al., 2020). 

Average power present in an EEG frequency band is a prominent feature used for classification 

in mental workload and motor imagery paradigms (Herman et al., 2008; Lotte et al., 2018). In 

addition to spectral features, EEG classification frameworks have used temporal (Yang et al., 

2019); linear (Das Chakladar et al., 2020), and non-linear signal features (Balli and 

Palaniappan, 2010) such as approximate entropy (Pincus, 1991; Natarajan et al., 2004). 

Long Short-Term Memory (LSTM) cells are modified Recurrent Neural Networks 

(RNNs) that can learn long temporal dependencies in sequence data. The basic architecture of 

an LSTM layer is a unit called a memory cell. It has a recurrent connection to itself and several 

activation gates that regulate the flow of information in and out of the cell. It retains a memory 

state within the network representing relevant information learned from the input time series. 

(Hochreiter and Schmidhuber, 1997). LSTM networks are state of the art in many fields, 

including natural language processing (K. Greff, 2017). The ability to approximate dynamical 

time-variant systems (Li, X. D., 2005) and learn temporal patterns that span large intervals 

makes LSTM based architectures a logical choice for classifying EEG signals (Tsiouris, Κ. Μ., 

2018). There are many variants of this architecture, of which bidirectional LSTM (BiLSTM) 

cells are of particular interest to classifying EEG data. One can visualize this layer as two 

standard memory cells parsing the data in opposite directions, enabling the individual cells to 

update learned representations using either past or future time points. The utilization of future 

time points to predict the current cell state necessitates that the signal is a complete-time series 

and not an evolving sequence. (Schuster and Paliwal, 1997).  

In this work, we used an RNN network architecture proposed by (Kaushik et al., 2019) 

and heuristically modified some parameters. We changed the penultimate dense layer of the 

proposed architecture from 32 to 16 neurons since the number of classes had been halved in 

the current problem compared to the original implementation. One of the challenges in the 

cross-session prediction of mental workload levels is the inter-session variability that often 

limits the network's performance (Yin & Zhang, 2017). To address this problem, we decided 

to combine data from two sessions under the assumption that intra-sessions variations will 

enable the network to learn representations generalizable across sessions.  

Methods: The whole signal from a 2-second epoch was designated as a single trial instance, 

and it was filtered with a 1Hz-40Hz bandpass filter. The mean resting-state EEG amplitude of 

a session was also subtracted from all the trials to eliminate any offset in the data (Chatterjee, 

B., 2019). All 61 channels of data were chosen for feature extraction. The average power of 

specific frequency bands in the EEG signal was estimated using Welch's spectral power density 

estimate. Each value obtained from delta, theta, alpha, beta, and gamma bands for every trial 



were concatenated in that order, with approximate entropy of the entire trial. The final feature 

vector had six elements which were then passed into the RNN classifier. 

RNN architecture contains one BiLSTM layer and two standard LSTM layers, making 

up the three operational modules. These individual layers are followed by batch-normalization 

layers, which helped standardize the variations due to the random initialization of weights and 

other hyperparameters while training. The flow diagram of our framework is shown in Figure 

1.  

 The EEG data from 1st and 2nd sessions for a single subject were combined and then 

shuffled before partitioning into training and validation sets by the ratio of 80:20. A 10-fold 

cross-validation procedure was followed to verify the training for each subject. The trained 

network was then used to predict the labels of unseen data from the 3rd session.  

Results and Conclusion: The average cross-validation accuracy of the proposed classifier is 

89.51%, with a standard deviation of 4.7. This work suggests that the BiLSTM classifier can 

provide a robust framework for EEG mental workload classification when coupled with 

spectral and non-linear features. 

(Link for MATLAB codes :  https://github.com/NeuralLabIITGuwahati/RNNClassifier) 
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Figure 1. Flow diagram of Mental workload 

framework 
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